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ABSTRACT Tuberculosis (TB) and hepatitis C virus (HCV) infections are both major
public health problems. Despite high rates of coinfection, there is scarce literature
addressing the convergence of the two diseases. One particularly unexplored area is
the potential for simultaneous treatment of TB and HCV which would allow for le-
veraging an extensive global TB treatment infrastructure to help scale up HCV treat-
ment. We review the drug metabolism of anti-TB and HCV drugs and the known
and potential drug-drug interactions between recommended HCV regimens and in-
dividual anti-TB drugs. Rifampin is the only anti-TB drug to have been formally stud-
ied for potential drug interactions with anti-HCV direct-acting antivirals (DAAs), and
existing data preclude these combinations. However, based on known pathways of
drug metabolism and enzyme effects, the combination of HCV DAA regimens with
all other anti-TB drugs may be feasible. Pharmacokinetic studies are needed next to
help move cotreatment regimens forward for clinical use among patients coinfected
with TB and HCV.
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uberculosis (TB) and chronic hepatitis C virus (HCV) infections are both major public
health problems responsible for significant morbidity and mortality worldwide.
There are an estimated 10 million incidence cases of TB globally and approximately 1.6
million TB-related deaths per year, making it the leading cause of infectious disease-
related mortality worldwide (1). Infection with HCV leads to chronic hepatitis in the
majority of cases, and in addition to >70 million prevalent cases, there are an estimated
3 to 4 million new cases and 400,000 deaths annually (2). Disease burden for both TB
and HCV are high and disproportionately affect persons in low- and middle-income
countries (LMICs) (1, 2). While data are limited, the prevalence of HCV has been found
to be high (>5%) among patients with active TB, especially in Eastern Europe and
Central Asia (>15%), where high rates of incarceration and injection drug use fuel both
epidemics (3, 4). Beyond studies focusing on the coprevalence of TB and HCV (5) or
rates of hepatotoxicity (6-8), there has been scarce discussion on the potential syner- Citation Kempker RR, AlghamdilWa, Al-Shaer
MH, Burch G, Peloquin CA. 2019. A
gies of integrating TB and HCV treatment. pharmacology perspective on simultaneous
The development and rollout of new all oral direct-acting antivirals (DAAs) for the tuberculosis and hepatitis C treatment.
treatment of HCV infection have occurred at breakneck speed and have revolutionized Amdmiieres Agemis dnemetine 01215 16,
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among those treated (9, 10). However, there are many challenges to expanding HCV Microbiology. All Rights Reserved.
treatment with DAAs, including improving case finding for chronic HCV infection Address correspondence to Russell R. Kempker,
(~20% of people with chronic HCV infection know their status), high drug costs, and rkempke@emory.edu.

the development of a health care workforce and infrastructure to provide treatment (2). nggg:go';‘;"”sc"pt posted online 7

In 2015, it was estimated that only 7% of people diagnosed with chronic HCV infection Published 21 November 2019
were started on treatment and access to DAAs, especially in most LMICs, remains
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limited (2). Given the lack of capacity to treat HCV infection in many settings, including
in both high-income countries and LMICs, there have been efforts and discussion to
leverage existing primary care, HIV, and injection drug use (IDU) treatment programs to
administer HCV treatment (11). An additional unexplored area is the use of TB treat-
ment facilities to provide HCV treatment for TB/HCV coinfected patients. National TB
programs exist in most countries, and their experienced and skilled health care work-
force consisting of physicians and nurses along with extensive associated laboratory
networks could offer a vital resource for HCV management in areas with insufficient
capacity to meet increasing HCV treatment demand. Treating TB/HCV coinfected
patients at a TB facility would also take advantage of the existing therapeutic relation-
ship between TB health care workers and their patients, which develops throughout the
long duration of TB treatment and would be in line with the goal of providing patient-
centered care to all patients with TB.

To consider the cotreatment of patients with active TB and chronic HCV infection, it
is imperative to understand the pharmacology of anti-TB and HCV drugs and consider
possible drug-drug interactions (DDIs) that may allow or preclude the use of certain
drug combinations. To our knowledge, there has been only one report in the literature
of a patient simultaneously treated for active TB and HCV (12) and one published study
on anti-TB and anti-HCV DDlIs in healthy subjects (13). To evaluate the pharmacology of
simultaneous TB and HCV treatment, we first briefly review the metabolism of anti-TB
drugs and oral DAAs for HCV and then discuss potential DDlIs; lastly, we discuss other
issues related to the pharmacology of TB and HCV cotreatment, including liver disease
and drug use. Our goal is to drive the field of TB and HCV comanagement ahead and
ultimately improve treatment outcomes by providing data to help guide a research
agenda for TB and HCV pharmacokinetic and clinical treatment studies.

TB AND HCV DRUG METABOLISM

For anti-TB drugs, we review the metabolism of drugs recommended for drug-
susceptible (DS) and multidrug-resistant (MDR) TB (14-16). With regard to HCV drugs,
we cover the metabolism of drugs that are currently recommended as either first-line
or alternative treatment regimens by the American Association for the Study of Liver
Diseases (AASLD) and the Infectious Diseases Society of America (IDSA) (17). For a more
exhaustive review, we direct the reader to recent in depth reviews (18-20). An overview
of key routes of metabolism for anti-TB and HCV drugs are displayed in Tables 1 and 2,
respectively.

Anti-TB drugs. The rifamycins are a cornerstone of first-line anti-TB treatment, and
they also present the most challenging drug class in regard to DDlIs, given their various
and potent effects on human drug metabolism systems (21). To a great extent,
rifamycins are eliminated by intestinal and hepatic metabolism to mostly desacetylated
and hydroxylated metabolites (22). The three rifamycins used to treat mycobacterial
infections include rifampin, rifapentine, and rifabutin, and all are metabolized to a
partially active 25-O-desacetyl metabolite. Rifampin and rifapentine are cleared largely
by an esterase, whereas rifabutin and especially 25-O-desacetyl-rifabutin depend on
cytochrome P450 (CYP) 3A (CYP3A) for enzymatic clearance. Both the rifamycins and
their metabolites are excreted primarily in the bile and eliminated in the feces (22).
Approximately 10% of rifabutin, 17% of rifapentine, and 13% to 24% of rifampin are
excreted unchanged in the urine (23-25).

Rifampin has an elimination half-life (t,,,) of approximately 2 to 4 h (24). Rifampin
notably induces its own metabolism or intestinal efflux (autoinduction), with the result
that area under the concentration-time curve (AUC) and plasma t,,, are both reduced
by 20% to 40% after 7 to 10 days of daily dosing (26). This autoinduction process is
different from rifampin’s well-known effects on CYP enzymes, since rifampin is not a
substrate for CYP enzymes (24, 27). Rifampin causes increased metabolism of many
drugs, but it rarely is affected by other drugs. Some genetic variations in carboxyles-
terase 2 enzyme may alter rifampin metabolism by affecting the gene expression (28).
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TABLE 1 Elimination of antituberculosis drugs and their effects on enzyme and transporter activity?

Transporter Enzyme/transporter
Drug Reference(s) Route of Elimination substrate inhibition Enzyme/transporter induction
First-line drugs
Rifampin 22,24 Deacetylation OATP1B1/SLCO1B1, Transporters: Enzymes: CYP1A2, -2B6, -2C19,
P-gp/ABCB1 OATP1B1/SLCO1B1 -2C8, -2C9, -3A4, UGT1A1.
Transporters: P-gp/ABCB1
Rifabutin 22, 34 CYP3A, hydroxylation, deacetylation — — CYP3A4
Rifapentine 22, 35,39, 41 Deacetylation, hydrolysis — — CYP3A4, -2C8/9
Isoniazid 43, 45 Acetylation, dehydrazination — Enzymes: CYP2C19, CYP2E1
-3A, -2A6, -2E1
Pyrazinamide 46 Hydrolysis — — —
Ethambutol 47 20% oxidation, 80% excreted — — —
unchanged in urine
Second-line drugs
Levofloxacin 49 87% excreted unchanged in urine — — —
Moxifloxacin 55, 56 Glucuronide and sulfate conjugation P-gp — —
Amikacin 47 >90% excreted unchanged in urine — — —
Kanamycin 47 >90% excreted unchanged in urine — — —
Capreomycin 47 50-60% excreted renally — — —
Ethionamide 51 Oxidation to sulphoxide metabolite — Enzyme: CYP2C8 —
Cycloserine 47 50-70% excreted unchanged in — — —
urine
Linezolid 50 Metabolized by oxidation P-gp — —
(independent of CYP enzymes);
renal and non-renal excretion
Clofazimine 57, 93 Hydrolysis and glucuronidation — Enzymes: CYP3A, —
P-gp, BCRP, MRP1
Bedaquiline 58 CYP3A4 (mainly), CYP2C8, CYP2C19 — — —
Delamanid 59, 60 Albumin; metabolites are further — — —
metabolized by CYP enzymes
(mainly by CYP3A4)
PAS 53 Acetylation — — —

a—, either unknown or no well-established effect. ABC, ATP-binding cassette transporters; CYP, cytochrome 450; OATP, organic-anion-transporting polypeptide; BCRP,
breast cancer resistance protein; MRP1, multidrug resistance-associated protein 1; P-gp, P-glycoprotein; PAS, p-aminosalicylic acid; SLC, solute carrier family; UGT,

uridine 5’-diphospho-glucuronosyltransferase.

Rifabutin undergoes extensive intestinal and hepatic metabolism, resulting in more
than 20 metabolites (22, 29). The primary metabolites are 25-O-desacetyl-rifabutin and
31-hydroxyl-rifabutin (22, 23, 29, 30). Rifabutin elimination t, , is in the range of 25 to
67 h, depending on whether the data are obtained using a single dose (longer) or at
steady state (shorter) (22, 23, 31). Similarly to rifampin, rifabutin undergoes autoinduc-
tion with 37% and 13% decreases in AUC and maximum concentration (C,,,,,), respec-
tively, after 10 daily doses (22, 29, 32, 33). CYP3A is the major isozyme that transforms
rifabutin to its oxidative metabolites in human enterocytes and liver microsomes, and
it also catalyzes oxidation of 25-O-desacetyl-rifabutin (22, 29). Rifabutin excretion occurs
through the biliary tract and, to a small degree, renally (30). After a 150-mg dose, biliary
concentrations reach up to 3 to 5 times the plasma concentration (34). Although not
free of enzyme induction, rifabutin typically is approximately 40% as potent as rifampin
and has been the preferred rifamycin when DDIs are unavoidable (34).

The elimination t, , of rifapentine ranges from 14 to 18 h in healthy young adults to
~20h in men >65 years (35) and is reduced with repeated dosing, suggesting auto-
induction (36, 37). Rifapentine is metabolized by arylacetamide deacetylase (38), with
nearly all radiolabeled drug in plasma being accounted for by rifapentine and its
25-desacetyl metabolite (39, 40). Approximately 87% of radiolabeled rifapentine is
recovered in either feces (70%) or urine (17%) (41).

With regard to the remaining first-line drugs, isoniazid is extensively metabolized,
mainly in the liver, to a number of inactive compounds by acetylation and dehydrazi-
nation. N-Acetyltransferase 2 forms acetyl-isoniazid, which is further metabolized to
mono- and diacetylhydrazine (42-44). Isoniazid is an inhibitor of CYP2A6, -3A, -2C19,
and -2E1, which may interact with other drugs with a narrow therapeutic index (45).
Pyrazinamide undergoes hydrolysis (46), and the majority of ethambutol is excreted
unchanged in the urine (47).
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Many of the second-line anti-TB drugs appear to be metabolized by other non-CYP
routes and thus are not affected by CYP inducers or inhibitors; hence, fewer DDIs are
expected overall. Aminoglycosides, capreomycin, levofloxacin, and cycloserine are
mostly excreted unchanged in the urine (47-49). Ethionamide and linezolid are mainly
metabolized by oxidation (50, 51), and p-aminosalicylic acid undergoes acetylation (52,
53). Finally, moxifloxacin and clofazimine are metabolized mainly by conjugation (54,
55). Moxifloxacin is a P-glycoprotein (P-gp) substrate (56), while clofazimine is a P-gp
inhibitor (57).

Bedaquiline and delamanid are the first new drugs to be approved for TB in
>40 years, and they have brought much hope and promise to improve the manage-
ment of MDR-TB. Bedaquiline is eliminated hepatically, being metabolized predomi-
nantly by CYP3A4 to its N-desmethyl metabolite. CYP2C8 and -2C19 have also been
found to contribute to its metabolism (58). Delamanid, on the other hand, has a unique
metabolic pathway. The parent drug is metabolized by plasma albumin to DM-6705
(M1), which is further metabolized by CYP enzymes through multiple metabolic path-
ways to form several metabolites (M2 to M8) (59, 60). The predominant pathway is
mediated by CYP3A4 to form its oxide (M2).

Anti-HCV drugs. The route and extent of metabolism is varied among the oral DAAs
(Table 2). Boceprevir and telaprevir were the first DAAs to be introduced and are
metabolized by CYP3A4 and are P-gp substrates; consequently, they are prone to many
DDiIs (61). Given decreasing demand and availability of improved HCV treatments, both
boceprevir and telaprevir have been pulled from the market. More recently introduced
DAAs, sofosbuvir and simeprevir, are extensively metabolized by the liver. Sofosbuvir is
a phosphoramidate prodrug that is hydrolyzed by intracellular cathepsin A and/or
carboxylesterase 1 to the inactive metabolite GS-331007 (monophosphate), which is
sequentially phosphorylated to the active metabolite GS-461203 (triphosphate) (62, 63).
Simeprevir is known to be primarily metabolized by CYP3A4, with possible additional
involvement of CYP2C8 and CYP2C19 (64).

The agents formulated in the multiple combination regimens approved between
the years 2014 and 2017 also exhibit variable metabolism. Ledipasvir undergoes minimal
oxidative metabolism through an unknown route and also requires an acidic pH for
absorption (65, 66). Ombitasvir undergoes amide hydrolysis followed by oxidative
metabolism in various locations (67). Paritaprevir is predominantly metabolized by
CYP3A4 and secondarily through CYP3A5. Daclatasvir, elbasvir, and grazoprevir are also
metabolized by CYP3A4 (68, 69). In contrast, dasabuvir is mainly metabolized by
CYP2C8, while CYP3A4 is a minor pathway of metabolism. Velpatasvir undergoes
extensive liver metabolism and has the potential to be implicated in DDIs due to the
fact that it requires an acidic gastric environment for absorption and is metabolized by
multiple CYP enzymes, including CYP2B6, -3A4, and -2C8 (65). Glecaprevir is secondarily
metabolized by CYP3A4, but pibrentasvir does not undergo any metabolism. Both are
primarily eliminated through the biliary-fecal route (70). The most recent agent ap-
proved in combination, voxilaprevir, is extensively metabolized in the liver by CYP3A4
(71).

DDIs BETWEEN ANTI-TB AND HCV DRUGS

As there are currently limited published DDI studies of anti-TB drugs and HCV DAAs,
we used data from drug package inserts and knowledge of drug metabolism to
determine known and potential DDIs, respectively. With regard to available DDI studies
contained in drug inserts, the only anti-TB drug studied was rifampin; thus, we
extrapolated potential DDIs for the remainder of anti-TB and HCV DAA drug combina-
tions. To further evaluate and confirm potential DDIs, we also utilized the University of
Liverpool HEP drug interaction online tool (https://www.hep-druginteractions.org),
with the exception of the following anti-TB drugs, which were not include in this
database: kanamycin, cycloserine, clofazimine, ethionamide, and para-aminosalicylic
acid. We evaluated potential DDIs from the perspective of different HCV regimens and
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TABLE 3 Drug-drug interactions between drug-susceptible tuberculosis and hepatitis C
drugs?

Anti-Tuberculosis Drugs for Drug-Susceptible
Hepatitis C Treatment Regimens* Disease”
(genotypes covered) INH [RIF |RFP |RFB |PZA |ETH
First-line

Glecaprevir, pibrentasvir (1-6)

Sofosbuvir, velpatasvir (1-6)

Elbasvir, grazoprevir (1,4)

Ledipasvir, sofosbuvir (1,4-6)

Alternative

Paritaprevir, ritonavir, ombitasvir,

dasabuvir, ribavirin (1)

Paritaprevir, ritonavir, ombitasvir, ribavirin
“4)

Simeprevir, sofosbuvir (1)

Daclatasvir, sofosbuvir (1-3)

Elbasvir, grazoprevir, ribavirin (1)

a*, as recommended in the AALSD/IDSA hepatitis C treatment guidelines; #, drugs put into drug-susceptible
and drug-resistant categories based on where they are commonly utilized (overlap does exist); INH,
isoniazid; RIF, rifampin; RFP, rifapentine; RFB, rifabutin; PZA, pyrazinamide; ETH, ethambutol; red, drugs that
should not be coadminstered; orange, potential clinically significant interaction; yellow, potential weak
interaction unlikely to be clinically significant; green, no clinically significant interaction expected.

their predicted interaction with individualized anti-TB drugs used for DS- and MDR-TB
as shown in Tables 3 and 4.

First-line HCV regimens. Currently, there are two first-line pangenotypic drug
regimens for the treatment of HCV infection, including glecaprevir-pibrentasvir and

TABLE 4 Drug-drug interactions between drug-resistant tuberculosis and hepatitis C
drugs?

Anti-Tuberculosis Drugs for Drug-Resistant Disease*
Hepatitis C Treatment Regimens* LEV AMK LZD CFz PAS BDQ DEL
(genotypes covered) MOX KAN CSs
CAP ETN
First-line

Glecaprevir, pibrentasvir (1-6)

Sofosbuvir, velpatasvir (1-6)

Elbasvir, grazoprevir (1,4)(118)

Ledipasvir, sofosbuvir (1,4-6)

Alternative

Paritaprevir, ritonavir, ombitasvir,
dasabuvir, ribavirin (1)

Paritaprevir, ritonavir, ombitasvir, ribavirin
4)

Simeprevir, sofosbuvir (1)

Daclatasvir, sofosbuvir (1-3)

Elbasvir, grazoprevir, ribavirin (1)

a* as recommended in the AALSD/IDSA hepatitis C treatment guidelines; #, drugs put into drug-susceptible
and drug-resistant categories based on where they are commonly utilized (overlap does exist); LEVO,
levofloxacin; MOXI, moxifloxacin; AMK, amikacin; KAN, kanamycin; CAP, capreomycin; LZD, linezolid; CFZ,
clofazimine; PAS, para-aminosalicylic acid; CS, cycloserine; ETN, ethionamide; BDQ, bedaquiline; DEL,
delamanid; orange, potential clinically significant interaction; yellow, potential weak interaction unlikely to
be clinically significant; green, no clinically significant interaction expected. Genotypes for first-line
treatment with elbasvir and grazoprevir, see reference 94.
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sofosbuvir-velpatasvir, and two additional regimens available for specific HCV geno-
types, including elbasvir-grazoprevir and sofosbuvir-ledipasvir. Potential DDIs are re-
viewed below.

Glecaprevir and pibrentasvir are substrates and inhibitors of P-gp and breast cancer
resistance protein (BCRP), with glecaprevir also being a substrate and inhibitor of
organic-anion-transporting polypeptide (OATP) 1B1/3 (70). Additionally, both drugs are
weak inhibitors of CYP3A, CYP1A2, and uridine 5’-diphospho-glucuronosyltransferase
(UGT) 1A1. When given with 600 mg rifampin once daily, the C,,,, and AUC of both
glecaprevir and pibrentasvir were decreased >80%; hence, rifampin is not recom-
mended to be given with glecaprevir-pibrentasvir (70). Rifabutin has been used suc-
cessfully with anti-HIV drugs and should be tested with anti-HCV drugs. Based on
existing knowledge of drug metabolism, other potentially clinically significant DDIs
include bedaquiline, which is metabolized by CYP3A4; thus, its concentrations may be
increased with glecaprevir-pibrentasvir. Weaker potential DDIs are possible with isoni-
azid or clofazimine given their inhibitory effect on CYP3A enzymes which are respon-
sible in part for the metabolism of glecaprevir. Clofazimine also inhibits two of the
transporters (BCRP and P-gp) that glecaprevir and pibrentasvir are substrates for (57).

With regard to sofosbuvir and velpatasvir, both are substrates of P-gp and BCRP
transporters. Additionally, velpatasvir is slowly metabolized by various CYP enzymes
and is an inhibitor of BCRP and OATP transporters. The C,,,,, and AUC of both sofosbuvir
and velpatasvir were significantly decreased (>70%) in the presence of continuous
daily use of rifampin 600 mg; thus, combination use with rifampin and other rifamycins
currently is contraindicated (72). Additional potential DDIs exist between isoniazid and
clofazimine and velpatasvir given their weak inhibition of CYP3A enzymes. There are no
other predicted significant interactions with additional anti-TB drugs given the lack of
any induction or inhibition of CYP enzymes by sofosbuvir or velpatasvir. Of note, the
DDlIs with the salvage regimen of sofosbuvir-velpatasvir-voxilaprevir and anti-TB med-
ications would be expected to be similar to those described above, given both
velpatasvir and voxilaprevir are eliminated by CYP enzymes (71).

The combination of elbasvir and grazoprevir is approved for HCV genotypes 1 to 4;
both drugs are metabolized by CYP3A4 and are substrates of P-gp. Grazoprevir is also
a substrate of OATP1B1. Both drugs can inhibit BCRP. Elbasvir is a weak inhibitor of P-gp
while grazoprevir is a weak inhibitor of CYP3A4 and UGT1A1. While elbasvir-grazoprevir
is not recommended to be given with rifampin, DDI data demonstrate mixed effects,
with single-dose 600 mg rifampin increasing the AUC and C,,,, of elbasvir and
grazoprevir, and continuous 600-mg-daily rifampin having minimal effect on grazopre-
vir AUC and C,,., and decreasing 24-h postdrug concentrations by 90% (69). The
inhibition of CYP3A4 by grazoprevir may increase the concentrations of bedaquiline,
and given the uncertainties of the therapeutic index of bedaquiline, this is a potentially
clinically significant interaction. Isoniazid and clofazimine may increase concentrations
of both elbasvir and grazoprevir given their weak inhibition of CYP3A enzymes. Other
anti-TB drugs are expected to have no major DDIs with elbasvir-grazoprevir.

The combination of sofosbuvir and ledipasvir has been the most commonly used
DAA combination to date and is approved for genotypes 1 and 4 to 6. Similar to
sofosbuvir, ledipasvir is also a substrate of P-gp, but in contrast, is also an inhibitor of
P-gp and BCRP. A single dose of 600 mg rifampin decreased the C,,,, and AUC of
ledipasvir by 35% and 59%, respectively. With regard to the clinical impact of this
decrease, initial dose-finding studies found little additional antiviral activity with le-
dipasvir >30 mg; however, viral breakthrough with use of 30 mg compared to the
standard 90-mg dose in one study was almost double (20% versus 11%) (73, 74). While
the exposure-response relationships of sofosbuvir and ledipasvir need to be better
defined, the pharmacokinetic impact of rifampin on ledipasvir along with effects on
sofosbuvir mentioned above currently precludes the use of sofosbuvir-ledipasvir with
rifampin or other rifamycins in clinical practice (66). Given low to no effect on the CYP
enzyme system, there is no other clinically significant interaction with additional anti-TB
drugs.
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Alternative recommended HCV regimens. There are an additional five combina-
tion regimens recommended as alternative treatment regimens for HCV genotypes 1 to
4 as outlined in Table 3. With regard to the elbasvir-grazoprevir plus ribavirin combi-
nation for genotype 1, the expected DDIs are similar to the elbasvir-grazoprevir
mentioned in the above section given no likely DDIs between ribavirin and anti-TB
medications. The DDIs for the remaining 4 regimens are discussed below.

For the two regimens containing sofosbuvir, including simeprevir-sofosbuvir and
daclatasvir-sofosbuvir, there are potential DDIs due to the metabolism of simeprevir
and daclatasvir by CYP3A4 and the inhibition of CYP3A4 by daclatasvir and transporters
by both drugs. Daily 600-mg rifampin decreased the C,,,, and AUC of daclatasvir by
79% and 56% (68), respectively, while it increased the C,,,,, of simeprevir by 31% but
decreased its AUC by 48% and C,,;,, by 92% (64). Hence, rifampin and all rifamycins
currently are not recommended to be coadministered with either of these regimens.
Given a mild inhibition of CYP3A4 by simeprevir, there is a potential increase in
bedaquiline concentrations which warrants caution. Conversely, there is no expected
interaction between daclatasvir and bedaquiline.

The two regimens based on a backbone of paritaprevir, ritonavir, ombitasvir, and
ribavirin plus/minus dasabuvir have no available data including rifampin but have a
high potential for DDIs (67). Both paritaprevir and dasabuvir are metabolized by CYP
enzymes, which likely prohibit their use with the CYP-inducing rifamycins. Additionally,
ritonavir is a strong CYP3A4, which raises the possibility of DDIs with anti-TB drugs,
particularly bedaquiline and delamanid. When administered with lopinavir-ritonavir,
the AUC of delamanid and its metabolite (DM-6705) was found to be increased by 25%
(13), and the clearance of bedaquiline was decreased by 35%, leading to an estimated
3-fold increase in exposure during chronic treatment (75). The inhibition of UGT1A1 by
paritaprevir, ombitasvir, and dasabuvir may also cause increased drug concentrations of
drugs that undergo glucuronidation, including moxifloxacin.

Overview. We conclude with a few key points from our review of the literature. The
use of rifampin with recommended HCV DAA regimens is contraindicated given the
strong induction of numerous drug-metabolizing systems and given available data
provided through pharmaceutical studies conducted. This would preclude the cotreat-
ment of HCV infection with DAAs and drug-susceptible TB with current first-line
rifampin-based regimens. Further pharmacokinetic study of elbasvir-grazoprevir with
rifampin and DDI studies of DAAs with rifamycins that have less drug-metabolizing
induction effects, specifically, rifabutin, are possible areas of further study. Rifabutin is
a potentially attractive rifamycin to use with ant-HCV drugs given its lower potency of
CYP enzyme induction than with rifampin; given that it may be feasible to use rifabutin
with DAAs from a pharmacokinetic perspective, we labeled rifabutin orange in Table 3,
indicating a potentially significant clinically interaction (34). This would provide insight
into whether compatible regimens for cotreatment of HCV infection and drug-
susceptible TB treatment are available. Additional DDIs with a potential for clinical
significance include (i) the use of bedaquiline with DAAs that inhibit CYP enzymes and
hence may increase bedaquiline concentrations and alter the concentrations of its
metabolites and (ii) the use of isoniazid and/or clofazimine with DAAs that are in part
eliminated by CYP3A enzymes given their weak inhibition of this enzyme system.
However, given the high tolerability of oral DAAs and no clear correlation of toxicity
with concentrations, it is unclear if combination treatment with either isoniazid or
clofazimine would lead to higher rates of clinically significant adverse events (20). With
regard to use of bedaquiline with DAAs, the potential clinical significance is predicated
in large part on the concern for a narrow therapeutic window of bedaquiline, including
an early study which showed a higher risk of death in patients receiving bedaquiline
and known effects on QT prolongation (76). However, the relationship between be-
daquiline concentrations and adverse events is unclear, and recent clinical data show
bedaquiline is well tolerated (77). The lack of clinically significant DDIs between other
anti-TB drugs used for MDR-TB and DAAs opens up the potential for cotreatment of
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patients with MDR/extensively drug-resistant (XDR)-TB and HCV coinfection and high-
lights the need for pharmacokinetic studies evaluating DDIs. The recent WHO guide-
lines for MDR-TB list linezolid, fluoroquinolones, and bedaquiline as the key drugs (class
A) for treatment, and given few predicted DDIs between DAAs and both linezolid and
fluoroquinolones, DDI studies with DAA and bedaquiline should be an initial priority
(16). If found that bedaquiline and some or all DAAs have limited or no clinically
significant DDIs, this would pave the way for clinical cotreatment studies. In contrast to
the Liverpool HEP online drug interaction tool, we listed the combination of delamanid
(metabolites eliminated by CYP3A4) with any HCV drug which has inhibition of CYP
enzymes as a potentially weak interaction unlikely to be clinically significant (Table 4).

Another important point to bring up with regard to potential DDIs between anti-TB
and HCV infection treatment is the therapeutic window of oral DAAs. As detailed in the
recent, comprehensive pharmacokinetics-pharmacodynamics (PK-PD) review of DAAs
by Smolders et al. (20), the standard dose of most oral DAAs is at the higher end of
doses tested given their high tolerability; however, with the exception of sofosbuvir
(78), the antiviral effect was similar at lower doses. Thus, the clinical impact of anti-TB
drugs which may decrease the concentrations of anti-HCV treatment such as the
rifamycins is uncertain given DAA concentrations may still remain in an effective range.

In an effort to provide interim guidance to clinicians who decide to treat TB and HCV
infection simultaneously, we provide the following recommendations. If treating a
patient with drug-susceptible TB and HCV (genotypes 1 and 4 to 6) infection, we would
favor the combination of isoniazid, rifabutin, pyrazinamide, and ethambutol with
ledipasvir and sofosbuvir. The rationale being that there are fewer potential DDIs with
ledipasvir and sofosbuvir than with other first-line HCV treatment regimens (Table 3).
With regard to patients with drug-susceptible TB and infections with HCV genotypes 2
and 3, we would recommend the same anti-TB regimen as described above including
rifabutin, given less potential for DDIs versus the other rifamycins and either glecaprevir-
pibrentasvir or sofosbuvir-velpatasvir. Among patients with drug-resistant TB, we would
recommend the newly recommended regimen (16) of three class A drugs (fluoroquin-
olone, bedaquiline, and linezolid) along with at least one class B drug (clofazimine or
cycloserine) assuming susceptibility along with an HCV regimen of sofosbuvir and
velpatasvir. This combination has the least theoretical DDIs (Table 4).

LIVER DISEASE AND SUBSTANCE USE DISORDER

Although no TB drugs are recommended to be dose adjusted in patients with
preexisting hepatic disease (Table 5), close and careful monitoring of liver function is
needed, especially for unstable or advanced hepatic disease, as some studies have
found such patients to be at higher risk of drug-related hepatotoxicity (79). Many TB
drugs are metabolized in the liver; hence, the potential impact of liver disease severity
on anti-TB drug pharmacokinetics should be addressed. While some data indicate that
patients with chronic hepatitis, without cirrhosis, have comparable hepatic enzymatic
activity to that of healthy individuals (80), there is also research finding moderate
decreases in CYP enzyme activity in treatment-naive HCV patients without significant
liver disease (81). In patients with liver cirrhosis, significant impairment in hepatic
clearance can occur, including decreases in the expression of some CYP enzymes (e.g.,
CYP3A4 and -1A2) and transporters (82). Wang et al. have shown that cirrhosis due to
HCV infection has different effects on the protein expression of various transporters
(83): increased protein expression in MATE-1 (multidrug and toxin extrusion protein 1)
and decreased expression of OCT1 (organic cation transporter 1) and P-gp. This could
have an impact on anti-TB and HCV drugs that are substrates to those transporters
(Tables 1 and 2). In addition, if hypoalbuminemia related to liver disease is present, this
could affect drugs metabolized by albumin such as delamanid, which is a highly
protein-bound drug (84, 85); in fact, administering delamanid to patients with hy-
poalbuminemia has been associated with increased risk of QT prolongation, most likely
due to high drug concentration. In cases where ascites is present, this would create an
additional space for hydrophilic drugs to distribute, resulting in lower plasma drug
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TABLE 5 Characteristics of anti-tuberculosis drugs related to liver disease

Protein Associated with

Drug Reference(s) binding (%) Dosing adjustments for hepatic disease (14) hepatotoxicity
First-line drugs

Rifampin 79, 95-97 72-94 None; use with careful clinical and laboratory monitoring Yes

Rifapentine 41,79,97,98 97-99 None; use with careful clinical and laboratory monitoring Yes

Isoniazid 79, 95, 97 0-34 None; use with caution in stable liver disease Yes

Pyrazinamide 46,79, 95,97 0-7 None; use with careful clinical and laboratory monitoring. Yes

Contraindicated in severe hepatic impairment

Ethambutol 79, 95 4-24 None No
Second-line drugs

Levofloxacin 99, 100 24-38 None No?

Moxifloxacin 100-102 26-50 None; use with caution secondary to risk of QT prolongation No?

Amikacin 103, 104 0-11 None No

Kanamycin 103, 104 0 None No

Capreomycin 104 None No

Ethionamide 51,101,104 30 None; use with caution Yes

Cycloserine 47,104 None; use with caution in alcohol-related hepatitis No

Linezolid 105, 106 31 None; not evaluated in severe hepatic impairment No; a single case has

been reported

Clofazimine 107 Not studied, use with caution, dose reduction may be warranted No

Bedaquiline 108, 109 >99.9 None; use with caution in severe hepatic impairment (not studied)  Yes

Delamanid 60, 110 99.5 None; not recommended in moderate and severe liver impairments No

p-Aminosalicylic acid 53, 104, 111 58-73 None; use with close laboratory and clinical monitoring Yes

aAlthough levofloxacin and moxifloxacin were associated with increased risk of acute liver injury compared to clarithromycin (100), they are generally not considered
hepatotoxic drugs.

concentrations (86). The effect of liver disease can also go beyond distribution and
metabolism. For instance, drug absorption can be affected due to reduced first-pass
metabolism, resulting in higher bioavailability in patients with cirrhosis, as has been
observed with carvedilol and midazolam (86). Given all these variables, predicting the
changes in drug kinetics in patients with liver disease is challenging and necessitates
the need for specific studies in patients with TB and HCV infection to better understand
the effect of the coinfection and cotreatment on drug concentrations, with the ultimate
goal of optimizing therapy. It also is important to keep in mind the drug selection and
dosing adjustment could be extended to drugs that are renally cleared, given that
patients with HCV infection are at a higher risk of developing and accelerating the
progression of kidney disease (87). The routes of elimination of each drug, including
those with renal excretion, are summarized in Tables 1 and 2. Additionally, dosing
recommendations for anti-TB drugs are included in recently released TB treatment
guidelines (14). With regard to HCV treatment regimens, for patients with chronic
kidney disease stages 1 to 3, there are no dosage adjustment recommendations for
first-line regimens, whereas for chronic kidney disease stage 4 or 5, the AASLD/IDSA
treatment guidelines recommend using either regular dose elbasvir-grazoprevir or
glecaprevir-pibrentasvir, given sofosbuvir is renally excreted (17).

Metabolism of FDA-approved medication-assisted treatment (MAT) drugs used to
treat substance use opiate disorder can be impacted by TB and HCV medications (88).
Both methadone and buprenorphine are metabolized by CYP3A4 among other CYP
enzymes. As a potent CYP3A4 inducer, rifampin has the potential to precipitate opiate
withdrawal symptoms in patients receiving concomitant TB and opioid replacement
therapy (89, 90). Rifabutin is also a CYP3A4 inducer but does not appear to cause a
significant interaction with methadone, while studies with buprenorphine are lacking
(91). Conversely, anti-TB and HCV drugs which have some inhibitory effect on CYP
enzymes (Tables 1 and 2) may increase concentrations of methadone and buprenor-
phine, thus necessitating MAT dose adjustments. There are also few clinical data on
DDIs between opiate replacement therapies and current HCV drugs. Simeprevir, pari-
taprevir, ombitasvir, ritonavir, and dasabuvir may have clinically significant drug inter-
actions with buprenorphine and should be monitored closely (92). Given that the
coepidemic of TB and HCV infection is linked in most cases by injection drug use, it will
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be crucial to address substance use disorder and implement MAT and hence to
understand the pharmacokinetic implications of combining TB, HCV, and medication-
assisted treatments.

CONCLUSION

Our review of available data on the potential DDIs between anti-TB and HCV

treatment reveals a large gap in research addressing this topic. While knowledge of
drug metabolism and existing data dim the prospects of combining any rifampin-based
TB treatment with DAAs, our interpretation of drug metabolism highlights the potential
compatibility of many anti-TB and HCV treatment regimens. Given the magnitude of
the TB and HCV epidemics and their overlap, cotreatment could have a huge public
health impact in many parts of the world, especially countries with well-developed
national TB programs and limited existing capacity to scale up HCV treatment. Our
review highlights possible anti-TB and HCV drug combinations to test in DDI studies
and other pertinent PK issues to consider among patients with TB and HCV disease.
Lastly, we hope this work helps to move the conversation and research agenda on
addressing simultaneous TB and HCV infection forward.
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